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Simulation of the scattering and deposition of dispersed-phase particles in the region of interaction of a tur-
bulent flow with an obstacle is considered. The regimes and distinctive features of deposition of particles in
the vicinity of a critical point are investigated under different conditions. The sedimentation coefficient of the
impurity is calculated as a function of the parameters of unperturbed flow and the particle size. The results
of the calculations are compared to the data obtained without allowance for the influence of the fluctuations
of the carrier-flow velocity on the motion of the impurity.

Introduction. The problem on the influence of different factors on the deposition of an impurity from a gas-
dispersed flow on the wall is of interest for many applications. In practice, the deposition of an impurity is both useful
(in gas-thermal spraying of coatings and in gas-cleaning systems and measuring devices) and harmful (slagging of
pipelines, disruption of IC production) in character. In many cases intensification of the transport properties of a me-
dium and increase in the degree of deposition of an impurity on the wall are linked to the turbulent character of the
flows formed.

Actual technical devices are characterized by the formation of small-scale gasdynamic singularities (stagnation
zones, regions of separation or reattachment of the flow) caused by different structural members or flow-rate factors,
which leads to localized precipitation of the condensed phase and becomes the reason for the local increase in heat
transfer and other intensifying mechanisms that have an effect on the operating capacity and longevity of the structure.

The deposition of particles from a turbulent flow on the wall is due to the action of different factors and
mechanisms (inertial, diffusional, thermophoretic, gravitational, centrifugal, and others), and theoretical models of depo-
sition of an impurity differ by the adopted principal driving force of the process [1]. In free-inertial models, it is as-
sumed that particles arrive at the wall due to their ejection from wall turbulent vortices. Convective-inertial models
link the process of deposition of particles to the inertial effects in ingress of large vortices into the boundary layer [2].
Diffusion models are based on the assumption that in the wall region, the coefficient of turbulent diffusion of a dis-
persed phase exceeds the coefficient of turbulent diffusion of a carrier gas due to the inertia of particles [3]. In migra-
tion models, the turbulent movement of particles (turbophoresis) to the wall because of the fluctuations of the
carrier-flow velocity is taken into account [4, 5].

The available data show that there is a certain critical value of the Stokes number Stk∗  separating the regimes
of impurity motion in which the deposition of particles on the obstacle surface exists or is absent [6, 7]. With the use
of the singular-perturbation theory, it has been shown that the cases of the presence (Stk > Stk∗ ) or absence
(Stk < Stk∗ ) of the inertial deposition of an impurity differ in the conditions of asymptotic join of the solution in the
internal viscous region (in the boundary layer) with the external nonviscous solution [8].

The influence of the nonequilibrium of the flow in front of the shock wave on the sedimentation coefficient
of particles in the vicinity of a critical point is investigated in [9]. The problem on the relation of the temperature of
the surface in flow to the inertial deposition of an impurity is considered in [7, 10]. As a result of the numerical ex-
periments carried out in the range of the temperature factor ϑw = 0.4–2, the coefficient of sedimentation of an impu-
rity on the surface of a sphere as a function of the particle size has been obtained [10]. When rp > rp∗  all the ζ(rp)
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curves merge together, whereas when rp < rp∗  and ϑw < 1 the ζ(rp) the curves are stratified by the temperature parame-
ter and deposition of the impurity on the wall is absent (ζ = 0) for ϑw > 1.

Stochastic simulation of the deposition of an impurity on cold and heated walls has been carried out in [4,
11]. In [4], the fluctuation field of the carrier-flow velocity is taken to be Gaussian, whereas in [11] experimental data
are used to simulate it. The results obtained demonstrate a substantial influence of the migration mechanism [4, 11]
and thermophoresis [7, 10] on the deposition of an impurity.

Whereas the theory of inertial deposition for Stk < Stk∗  predicts the absence of settling particles, experimental
data show that in this case, too, there are particles arriving at the wall, and the fraction of small particles in deposits
is much higher than that of large particles [7]. This can be due to the migration mechanism of motion and deposition
of the impurity [4, 11].

In this work, we consider the problems of construction and numerical realization of the model of deposition
of an impurity from a turbulent gas-dispersed flow in the vicinity of a critical point. The influence of the turbulence
of the carrier flow on the behavior of the dispersed impurity is taken into account by introduction of random fluctua-
tions of the velocity of a carrier medium into the equation of motion of a particle. The anisotropy of the turbulence
field near the wall is allowed for on the basis of damping functions, to construct which we use experimental data. The
equations describing the motion of the impurity are integrated in the known (computed in advance) gasdynamic field
of a carrier gas (the back influence of particles on the gas is disregarded). We investigate the influence of the particle
size and the initial parameters of the flow on the regularities of the scattering and deposition of the impurity near the
critical point. The results of numerical simulation are compared within the framework of different models; the calcula-
tion results are compared to the data obtained without allowance for the influence of turbulent pulsations on the mo-
tion of particles.

Simulation of the Gas Phase. Let us consider plane or axisymmmetric flow of a mixture of a viscous heat-
conducting gas with monodisperse condensed particles of a spherical shape near the critical point. We bring the x axis
of a rectangular or cylindrical coordinate system into coincidence with the wall and guide the y axis perpendicularly
to it. We locate the origin of the coordinate system at the critical point O (Fig. 1).

Change in the hydrodynamic situation in the immediate vicinity of the obstacle surface, in particular, the pres-
ence of a boundary layer and the influence of the temperature of the surface in flow, affects the process of deposition
of an impurity most strongly.

For fairly high Reynolds numbers the flow region is subdivided into two subregions: the external region,
where the viscosity and thermal conductivity of the gas are insignificant, and the internal region (thin boundary layer).
Continuous fields of the parameters of the gas throughout the region are obtained by joining the solutions in the non-
viscous region and in the boundary layer.

External Region. In the vicinity of the critical point, the components of the velocity of nonviscous potential
flow have the form [12]

U = ax ,   V = − (n + 1) ay .

Fig. 1. Flow in the vicinity of the critical point.
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The velocity gradient of nonviscous flow in the direction a = dU/dx (it is in parallel to the wall) represents the pa-
rameter of solution. In the vicinity of the critical point, we have a = BV∞ ⁄ L, and the quantity B depends on the ge-
ometry of the obstacle (B = 1 for a plane plate, B = 2 for a circular cylinder, and B = 3 for a sphere).

In the external region of the boundary layer, the characteristics of turbulence are calculated on the basis of the
following equations:

V 
dk
dy

 = − ε ,   V 
dε
dy

 = − cε2 
ε2

k
 .

Variation in the characteristics of turbulence along the longitudinal coordinate is disregarded [13]. Setting V =
V∞, separating variables, and determining the integration constants from the boundary conditions, we obtain

k

k∞
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The above relations determine the boundary conditions for calculation of the boundary layer.
Internal Region. The system of equations describing flow of a compressible gas in the turbulent boundary

layer has the form [12]
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The pressure gradient dp/dx is found by solution of the nonviscous problem.
Equations (1)–(5) are supplemented with the equation of state of an ideal perfect gas p = ρRT. Turbulent vis-

cosity is computed from the Kolmogorov–Prandtl formula µt = cµρk2 ⁄ ε. We take the power-law dependence of the
viscosity on temperature

µ
µs

 = 


T
Ts





m

 .

The boundary conditions for Eqs. (1)–(5) are formulated on the obstacle surface and in an unperturbed flow

u = v = k = ε = 0 ,   T = Tw   for   y = 0 ;
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u = U ,   T = T∞ ,   k = k∞ ,   ε = ε∞   for   y = ∞ .

Calculation of the characteristics of viscous flow is complicated by the small thickness of the boundary layer and the
large gradients of the functions sought in the region of interaction of the flow with the obstacle.

Transformation of Basic Equations. To obtain the coordinate system in which the gradients of the sought
functions near the wall decrease and to eliminate the singularity occurring at the critical point we introduce transfor-
mation of the coordinates

ξ = √ a
νs

 x ,   η = √ a
νs

 y .

We assume that, in the small vicinity of the critical point, the distributions of the velocity, pressure, temperature, and
turbulence characteristics have the form

u = √aνs  ξϕ′ (η) ϑ (η) ,   v = − (n + 1) √aνs  ϕ (η) ϑ (η) ,

ps − p = aρsνs [ξ
2 ⁄ 2 + χ (η)] ,   T = Tsϑ  (η) ,

k = aνsψ (η) ,   ε = a
2νsω (η) .

Since we have ∂p ⁄ ∂y = 0 in the boundary layer, the density distribution at each point of x across the bound-
ary-layer thickness is found in terms of the temperature distribution

ρ (η) = 
ρs

ϑ (η)
 .

After the substitution of the above relations into Eqs. (1)–(5) and neglect of the terms of the order ξ2 in the
small vicinity of the critical point, we obtain the following system of equations:
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Here φ = µt
 ⁄ µ.

In transformed variables, the following conditions will take the form

ϕ = ϕ′ = ψ = ω = 0 ,   ϑ  = ϑw   for   η = 0 ;
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ϕ′ = 1 ,   ϑ  = 1 ,   ψ = ψ∞ ,   ω = ω∞   for   η = ∞ .

The solution of Eqs. (6)–(9) is constructed on the basis of scalar and vector runs with iterational matching by non-
linearities and blocks of equations.

Simulation of the Dispersed Phase. Equations describing the translational motion of a spherically shaped par-
ticle have the form

drp

dt
 = vp , (10)

dvp

dt
 = 

3CDρ
8ρprp

  v − vp  (v − vp) .
(11)

The drag coefficient is computed using the relations of [14]. In addition to the drag force, we introduce into the model
of interaction of the particle with the gas flow the Saffman lifting force and the thermophoresis force [15] which allow
for the shearing character of flow in the boundary layer and the influence of the temperature of the surface in flow.

Equations (10) and (11) are integrated along the trajectory of an individual particle and require that only the
initial conditions — the coordinates of the particle and its velocity at the instant of time t = 0 — be specified.

The gas velocity in the turbulent flow represents a random field of spatial coordinates and time. The influence
of turbulence on the behavior of a particle is allowed for by introduction of random fluctuations of the velocity of the
carrier medium into Eq. (11). The gas velocity is represented in the form of the sum of the average component and a
random quantity that is selected within the framework of a locally isotropic and locally homogeneous approximation
from the normal distribution law with a zero mathematical expectation and a standard deviation

σ = √2
3

 k  .

The assumption on the isotropy of turbulence leads to an overstatement of the fluctuations of the velocity
component normal to the wall [4, 5]. To allow for the anisotropy of flow we introduce the damping functions

fi = 
svi

′vk
′ t

3I
 .

The value of the random velocity component is computed from the formula

vi
′  = σfi .

The damping functions are constructed on the basis of experimental data [16] according to which the maximum value
of the pulsation of the velocity component normal to the wall exceeds approximately 2.4–2.6 times the corresponding
value in the direction that is in parallel to the wall. Such an approach leads to more realistic results than the model
of [4], which is based on the isotropic Gaussian random field of velocity fluctuations, and the model used in [3], in
which the Kreichman model is used for calculation of velocity fluctuations.

The turbulence field is simulated by a set of spherical vortices of different size, and the sampled velocity
fluctuation is assumed to be constant inside the vortex during its lifetime. As soon as the particle goes beyond the in-
itial mole or the lifetime of the vortex elapses and it loses its individuality, a new fluctuation is sampled [17, 18]. The
lifetime and size of the vortex to which the fluctuation is linked are determined by the local characteristics of turbu-
lence.

As the time criterion of generation of a new fluctuation, we use the minimum from the lifetime of the vortex
and the time of traversal of the vortex by the particle
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Θ = min 
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The time of dynamic relaxation of the particle is computed from the relation

τ = 
8

3
 
ρ
ρp

 
rp

CD  v − vp
 .

If Le > τ  v − vp , the expression for Θc loses its meaning. This means that the particle does not go beyond the given
vortex and remains within it as long as it exists. The time criterion of generation of a new fluctuation is assumed to
be Θe.

The integral turbulence scale Le D k3 ⁄ 2 ⁄ ε is used as the space criterion.
Particular Cases. The formulated system of equations (6)–(9) enables us to generalize certain particular cases.
Nonviscous Approximation. For Stokes particles (Cd = 24/Rep), a distinctive feature of Eqs. (10) and (11) is

that the equations describing particle motion in the longitudinal (axial) and transverse (radial) directions are integrated
in finite form independently of one another [6].

The pattern of motion of the impurity is determined by the Stokes number. It is convenient to introduce a
modified Stokes number S = B Stk whose critical value S∗  = 0.25/(n + 1) is independent of the geometry of the ob-
stacle. When S < S∗ , the particles do not reach the surface in finite time. When S > S∗ , the particles that move in equi-
librium with the gas at a certain initial distance from the critical point always collide with the wall.

The dependence of the sedimentation coefficient on the Stokes number, calculated for nonseparating potential
flow past the obstacle, is the lower bound for the sedimentation coefficient under actual conditions, for example, with
allowance for gravitational effects or for the temperature of the surface in flow [7].

Influence of the Boundary Layer. The equations describing the velocity and temperature distributions in the
laminar boundary layer of an incompressible liquid are obtained from Eq. (6)–(9) for ϑ  B 1 and φ B 1 and coincide
with the Folkner–Scan equations [12]. The dynamic and thermal problems are separated and the equation of variation
of the temperature is solved with the known velocity distribution.

In this case the pattern of motion of the impurity is determined by the Reynolds and Stokes numbers. For
high Reynolds numbers the boundary-layer thickness is small; consequently, the distance traversed by the particles in
the boundary layer and the work done by the gas on the particles are also small. The boundary layer exerts a substan-
tial influence on the final stage of deposition of fairly small particles incident on the wall at a large angle [6]. Allow-
ance for the boundary layer leads to an increase in the critical Stokes number [7, 19]. Langmiur formulas are used to
evaluate the coefficient of sedimentation of the impurity on the surface of a sphere [15].

Fig. 2. Distribution of the kinetic turbulence energy in the vicinity of the criti-
cal point for θ√Re∞  = 20 and Re∞ = 5⋅104 (1); 105 (2); 2⋅105 (3); 5⋅105 (4).
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In the diffusion approximation, when Fick’s law is taken for the rate of diffusion of the impurity, the equation
for the concentration of the dispersed phase is reduced to an ordinary differential equation of second order whose so-
lution is obtained in finite form [20].

Influence of the Nonisothermality of Flow. The equations describing the velocity and temperature distributions
in the laminar boundary layer of a compressible liquid are obtained for φ B 0. Allowance for the nonisothermality and
compressibility of flow cause the velocity field to become dependent on the temperature of the surface in flow (the
dynamic and thermal problems are interrelated).

In the nonisothermal flow, the characteristics of deposition are affected by the temperature factor in addition
to the Reynolds and Stokes numbers. The influence of the wall temperature on the deposition of an impurity is con-
sidered in [7, 10]. Deposition of small particles under nonisothermal conditions is determined by the action of a ther-
mophoretic force causing the displacement of the particles in the direction opposite to the temperature gradient.

Influence of Turbulence. The equations describing turbulent flow of an incompressible liquid in the vicinity of
the critical point are obtained for ϑ  B 1 and are given in [21] (including the cases allowing for the back influence of
the impurity).

The calculation results demonstrate a sharp increase in the pulsation characteristics of the flow in the wall vis-
cous region of flow (Fig. 2). They are normalized to the maximum value of the kinetic turbulence energy ψm =
3.8⋅103 at Re∞ = 5⋅105. Turbulent pulsations of the carrier flow are observed in the immediate vicinity of the entrain-
ment surface, and the turbulent-migration mechanism is of primary importance in the deposition of the impurity.

Results and Discussion. Let us consider the regime of inertial deposition where all incident particles are ab-
sorbed by the surface. The intensity of deposition of the particles is characterized by the sedimentation coefficient by
which we mean the ratio of the density of the flux of incident particles at the critical point to the density of the flux
of particles of a given fraction in an unperturbed flow. The sedimentation coefficient is computed from the formula

ζ = 




xp0

xp,w





n+1

 .

Its calculation requires that the trajectory of a particle passing through a certain point xp0 in the unperturbed flow and
meeting with the surface at the point xp,w be known.

Some results of numerical calculations on deposition of alumina particles from a turbulent air flow on a
sphere are given in Figs. 3 and 4. The parameters of the gas and dispersed phases are as follows: V∞ = 1–30 m/sec,
T∞ = 273 K, k∞ = 104–10−1 m2 ⁄ sec2, ε∞ = 104–10−1 m2 ⁄ sec2, L = 1 m, rp = 1–50 µm, up0 = 0, vp0 = V∞, xp0/L =

Fig. 3. Trajectory of motion of a particle of radius rp = 5 µm (a) and rp = 15
µm (b) in the region of interaction of the flow with the obstacle with neglect
of (curves 1) and allowance for (curves 2) the turbulent pulsations of the car-
rier flow. The insets show realizations of the random trajectories of notion of
the particles.
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0.5, yp0/L = 5.0, Pr = 0.72, and m = 0.76. The thermophysical properties of the gas and the particles have been taken
from the reference literature.

The trajectories of particles of prescribed size are constructed at a fixed value of yp0 and with variation of the
value of xp0 with a certain step from 0 to the value of xp,w for which the condition of arrival of a particle at the sur-
face in flow is not observed. The particle contacting the obstacle surface is assumed to be the condition of deposition
of the particle on the obstacle. The coordinate of the point of contact is taken as the deposition coordinate xp,w.

To describe the behavior of the impurity in the turbulent flow on the basis of the stochastic model we must
calculate the trajectories of a large number of trial particles. In the calculations, we simulated from 103 to 104 trajec-
tories of trial particles depending on their size. The integration step along each trajectory was bounded by the time and
space scales of turbulence. The decrease in the particle size leading to an increase in the number of realizations is nec-
essary for obtaining a statistically reliable average pattern of motion of the impurity due to the growth in the contri-
bution of the interactions of a particle with vortices of progressively smaller size.

The trajectories of particle motion in the region of interaction of the flow with the obstacle are shown in Fig.
3a (subcritical Stokes number, Stk = 0.0312) and in Fig. 3b (supercritical Stokes number, Stk = 0.1097). Curves 1 cor-
respond to the results obtained without allowance for the influence of turbulent pulsations on the motion of a particle,
whereas curves 2 correspond to the results of statistical averaging over the ensemble of particles.

At a large distance from the obstacle surface, the trajectories of particles represent straight lines. As the ob-
stacle is approached, the trajectories of small particles (rp < 8 µm) bend similarly to the streamlines of the liquid (Fig.
3a); part of the particles does not reach the surface (when Stk < Stk∗ ).

In the nonviscous region, the gradients of kinetic turbulence energy are small; therefore, the effect of turbo-
phoresis is slight here. The influence of turbulent velocity pulsations on the motion of a particle begins to appear upon
its arrival at the wall region. The inhomogeneity of the turbulence field of the gas phase in the presence of the maxi-
mum of kinetic energy in the boundary layer gives rise to the particle’s turbulent migration (turbophoresis force) di-
rected toward decreasing pulsation energy of the gas (to the wall). For particles of large fractions (rp < 12 µm), the
boundary layer and the velocity pulsations in it exert no substantial influence on the motion and scattering of the im-
purity by virtue of the inertia of such particles (Fig. 3b).

The dependences of the sedimentation coefficient on the particle size that have been obtained within the
framework of different models are shown in Fig. 4. Curves 1 and 2 correspond to the models of creeping (Re∞ → 0
and Stk∗  = 0.6070) and nonviscous (Re∞ → ∞ and Stk∗  = 0.0417) flows near the sphere. Allowance for the turbulent
fluctuations of the carrier-flow velocity leads to higher values of the sedimentation coefficient (dots) than those in the

Fig. 4. Coefficient of sedimentation of the impurity on the surface of a sphere
vs. particle size: 1 and 2) models of creeping and nonviscous flow near the
sphere; dashed curve, results of calculation at Re∞ = 105 without allowance
for the influence of the fluctuations of the carrier-flow velocity; dots, results
of calculation according to the stochastic model.
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case where the fluctuations are disregarded (dashed curve). The migration mechanism of motion of the impurity in the
turbulent boundary layer contributes to the additional deposition of small particles. Furthermore, the influence of the
relative velocity of motion of the phases (particles keep ahead of the gas) should be taken into account in the bound-
ary layer.

Under nonisothermal conditions, the dependence of the sedimentation coefficient on the Stokes number is
basic in the region Stk > Stk∗ , where the inertial mechanism of deposition is dominant. In the region of small particles
(Stk < Stk∗ ), the influence of the Stokes number is ambiguous. As the Stokes number increases, the sedimentation co-
efficient can increase or decrease depending on the parameter due to which Stk changes. For example, the sedimenta-
tion coefficient monotonically drops with variation of it due to the increase in V∞ and rp and monotonically increases
with variation due to the decrease in L.

The Saffman force affects the intensity of deposition of the impurity but rather slightly, particularly under iso-
thermal conditions. The main contribution to the increase in the sedimentation coefficient in the turbulent flow is made
by the migration coefficient.

CONCLUSIONS

The investigations carried out have shown that the migration mechanism exerts a substantial influence on the
motion and deposition of the impurity in the vicinity of the critical point. The constructed model leads to satisfactory
results consistent with the data of numerical experiments within the framework of different models. The use of the mi-
gration model allowing for the dispersion of the impurity in the turbulent flow makes it possible, in particular, to ex-
plain the removal of particles to the obstacle’s surface and the presence of dispersed-phase deposits in the case where
the Stokes number turns out to be lower than its critical value.

Further development of the model involves the abandonment of damping functions allowing for the anisotropy
of the turbulence field in the boundary layer and the application of the equations of transport of Reynolds stresses, di-
rect numerical simulation, and the method of simulation of large vortices to the calculation of the flow parameters.

NOTATION

a, gradient of the velocity of nonviscous flow, 1/sec; c, specific heat at constant pressure, J/(kg⋅K); cµ, cε1,
and cε2, constants of the turbulence model; f, damping function; k, kinetic turbulence energy, m2 ⁄ sec2; m, exponent in
the dependence of the viscosity on temperature; n, index of the geometry of flow; p, pressure, Pa; r, radius, m; r, ra-
dius vector, m; t, time, sec; u and v, components of the velocity of viscous flow, m/sec; v, velocity vector, m/sec; x
and y, longitudinal and transverse coordinates, m; B, parameter dependent on the geometry of the obstacle; Cd, drag
coefficient of a particle; L, characteristic space scale, m; Pr, Prandtl number; R, gas constant, J/(kg⋅K); Re, Reynolds
number; S, modified Stokes number; Stk, Stokes number; T, temperature, K; U and V, components of the velocity of
nonviscous potential flow, m/sec; ε, rate of dissipation of turbulent energy, m2 ⁄ sec3; ζ, sedimentation coefficient; ϑ ,
dimensionless temperature; λ, thermal conductivity, W/(m⋅K); µ, dynamic viscosity, N/(m2⋅sec); ν, kinematic viscosity,
m2/sec; ξ and η, self-similar constants; θ, degree of turbulence; ρ, density, kg/m3; σ, standard deviation; σk and σε,
constants of the turbulence model; τ, dynamic-relaxation time, sec; φ, ϕ, χ, ψ, and ω, dimensionless turbulent viscos-
ity, velocity, pressure, kinetic energy of turbulence, and rate of dissipation of turbulence energy; Θ, characteristic time
scale, sec. Subscripts and superscripts: c refers to the time of traversal of the vortex by a particle; e, turbulent vortex
(eddy); i, tensor index; m, maximum; p, particle; s, critical (stagnation) point; t, turbulent; w, wall; 0, refers to the pa-
rameters at the initial instant of time; ∞, infinity; *, critical value of the parameter; ′, refers to the pulsatory parameters
of the flow; d refers to the characteristics of drag of a particle.

REFERENCES

1. E. P. Mednikov, Turbulent Transfer and Precipitation of Aerosols [in Russian], Nauka, Moscow (1981).
2. M. Shin, D. S. Kim, and J. W. Lee, Deposition of inertia-dominated particle inside a turbulent boundary layer,

Int. J. Multiphase Flow, 29, No. 1, 893–926 (2003).

902



3. Q. Chen and G. Ahmadi, Deposition of particles in a turbulent pipe flow, J. Aerosol Sci., 28, No. 5, 789–796
(1997).

4. C. Kroger and Y. Drossions, A random-walk simulation of thermophoretic particle deposition in a turbulent
boundary layer, Int. J. Multiphase Flow, 26, 1325–1350 (2000).

5. E. A. Matida, K. Nishino, and K. Torii, Statistical simulation of particle deposition on the wall from turbulent
dispersed pipe flow, Int. J. Heat Fluid Flow, 21, 389–402 (2000).

6. J. A. Laitone, Erosion prediction near a stagnation point resulting from aerodynamically entrained solid parti-
cles, J. Aircraft, 16, No. 12, 809–814 (1979).

7. F. E. Spokoinyi and Z. R. Gorbis, Special features of deposition of fine-dispersed particles from a cooled gas
flow on a transversely streamlines heat-transfer surface, Teplofiz. Vys. Temp., 19, No. 1, 182–199 (1981).

8. A. N. Osiptsov, Boundary layer on a blunt body in dusted gas flow, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza,
No. 5, 99–107 (1985).

9. A. P. Vasil’kov, Vicinity of the critical point of a blunt body in the hypersonic two-phase flow, Izv. Akad.
Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 121–129 (1975).

10. Yu. M. Tsirkunov and N. V. Tarasova, Influence of the temperature of the obstacle on deposition of impurity
from a supersonic gas-suspension flow, Teplofiz. Vys. Temp., 30, No. 6, 1154–1162 (1992).

11. C. Greenfield and G. Quarini, A Lagrangian simulation of particle deposition in a turbulent boundary layer in
the presence of thermophoresis, Appl. Math. Model., 22, 759–771 (1998).

12. H. Schlichting, Boundary Layer Theory [Russian translation], Nauka, Moscow (1974).
13. R. M. Traci and D. C. Wilcox, Freestream turbulence effects on stagnation point heat transfer, Raketn. Tekh.

Kosmonavt., 13, No. 7, 61–69 (1975).
14. C. B. Henderson, Drag coefficients of spheres in continuum and rarefied flows, AIAA J., 14, No. 6, 707–708

(1976).
15. L. E. Sternin and A. A. Shraiber, Multiphase Particle-Laden Gas Flows [in Russian], Mashinostroenie, Moscow

(1994).
16. Y. Guo nd D. H. Wood, Measurements in the vicinity of a stagnation point, Exp. Thermal Fluid Sci., 25, 605–

614 (2002).
17. A. D. Gosman and E. Ioannides, Aspects of Computer Simulation of Liquid-Fuel Combustors, AIAA Paper, No.

81-0323 (1981).
18. K. N. Volkov and V. N. Emel’yanov, A stochastic model of motion of a condensed particle in a channel with

permeable walls, Mat. Modelir., 11, No. 3, 105–111 (1999).
19. C. G. Phillips and S. R. Kaye, The influence of the viscous boundary layer on the critical Stokes number for

particle impaction near a stagnation point, J. Aerosol Sci., 30, No. 6, 709–718 (1999).
20. R. Tsai and L. J. Liang, Inertial effect on aerosol particle deposition from an axisymmetric stagnation point

flow approximation, Int. Commun. Heat Mass Transfer, 29, No. 4, 489–496 (2002).
21. K. N. Volkov and V. N. Emel’yanov, Calculation of turbulent two-phase flow in the region of impingement of

a flow on a body, Inzh.-Fiz. Zh., 71, No. 4, 599–605 (1998).

903


